Плитка и... Из дерева Выбор покрытия

Kvant. Как излучать радиоволны. Излучение и приём радиоволн Выводы на основе распространения и сложности формирования радиоволн

Помимо свойств радиоволн, необходимо тщательно подбирать антенны, для достижения максимальных показателей при приеме/передаче сигнала.
Давайте ближе познакомимся с различными типами антенн и их предназначением.


Антенны - преобразуют энергию высокочастотного колебания от передатчика в электромагнитную волну, способную распространяться в пространстве. Или в случае приема, производит обратное преобразование - электромагнитную волну, в ВЧ колебания.

Диаграмма направленности - графическое представление коэффициента усиления антенны, в зависимости от ориентации антенны в пространстве.

Антенны
Симметричный вибратор

В простейшем случае состоит из двух токопроводящих отрезков, каждый из которых равен 1/4 длины волны.

Широко применяется для приема телевизионных передач, как самостоятельно, так и в составе комбинированных антенн.
Так, к примеру, если диапазон метровых волн телепередач проходит через отметку 200 МГц, то длина волны будет равна 1,5 м.
Каждый отрезок симметричного вибратора будет равен 0,375 метра.

Диаграмма направленности симметричного вибратора

В идеальных условиях, диаграмма направленности горизонтальной плоскости, представляет собой вытянутую восьмерку, расположенную перпендикулярно антенне. В вертикальной плоскости, диаграмма представляет собой окружность.
В реальных условиях, на горизонтальной диаграмме присутствуют четыре небольших лепестка, расположенных под углом 90 градусов друг к другу.
Из диаграммы можем сделать вывод о том, как располагать антенну, для достижения максимального усиления.

В случае не правильно подобранной длины вибратора, диаграмма направленности примет следующий вид:

Основное применение, в диапазонах коротких, метровых и дециметровых волн.

Несимметричный вибратор

Или попросту штыревая антенна, представляет из себя «половину» симметричного вибратора, установленного вертикально.
В качестве длины вибратора, применяют 1, 1/2 или 1/4 длины волны.

Представляет собой рассеченную вдоль «восьмерку». За счет того, что вторая половина «восьмерки» поглощается землей, коэффициент направленного действия у несимметричного вибратора в два раза больше, чем у симметричного, за счет того, что вся мощность излучается в более узком направлении.
Основное применение, в диапазонах ДВ, КВ, СВ, активно устанавливаются в качестве антенн на транспорте.

Наклонная V-образная

Конструкция не жесткая, собирается путем растягивания токопроводящих элемементов на кольях.
Имеет смещение диаграммы направленности в стороны противоположную острию буквы V

Применяется для связи в КВ диапазоне. Является штатной антенной военных радиостанций.

Антенна бегущей волны
Также имеет название - антенна наклонный луч.

Представляет из себя наклонную растяжку, длина которой в несколько раз больше длины волны. Высота подвеса антенны от 1 до 5 метров, в зависимости от диапазона работы.
Диаграмма направленности имеет ярко выраженный направленный лепесток, что говорит о хорошем усилении антенны.

Широко применяется в военных радиостанциях в КВ диапазоне.
В развернутом и свернутом состоянии выглядит так:

Антенна волновой канал


Здесь: 1 - фидер, 2 - рефлектор, 3 - директоры, 4 - активный вибратор.

Антенна с параллельными вибраторами и директорами, близкими к 0,5 длины волны, расположенными вдоль линии максимального излучения. Вибратор - активный, к нему подводятся ВЧ колебания, в директорах, наводятся ВЧ токи за счет поглощения ЭМ волны. Расстояние между рифлектором и директорами подпирается таким образом, чтобы при совпадении фаз ВЧ токов образовывался эффект бегущей волны.

За счет такой конструкции, антенна имеет явную направленность:

Рамочная антенна

Направленность - двулепестковая

Применяется для приема ТВ программ дециметрового диапазона.

Как разновидность - рамочная антенна с рефлектором:

Логопериодическая антенна
Свойства усиления большинства антенн сильно меняются в зависимости от длины волны. Одной из антенн, с постоянной диаграммой направленности на разных частотах, является ЛПА.

Отношение максимальной к минимальной длине волн для таких антенн превышает 10 - это довольно высокий коэффициент.
Такой эффект достигается применением разных по длине вибраторов, закрепленных на параллельных несущих.
Диаграмма направленности следующая:

Активно применяется в сотовой связи при строительстве репитеров, используя способность антенн, принимать сигналы сразу в нескольких частотных диапазонах: 900, 1800 и 2100 МГц.

Поляризация
Поляризация - это направленность вектора электрической составляющей электромагнитной волны в пространстве.
Различают: вертикальную, горизонтальную и круговую поляризацию.


Поляризация зависит от типа антенны и ее расположения.
К примеру, вертикально расположенный несимметричный вибратор, дает вертикальную поляризацию, а горизонтально расположенный - горизонтальную.

Антенны горизонтальной поляризации дают больший эффект, т.к. природные и индустриальные помехи, имеют в основном вертикальную поляризацию.
Горизонтально поляризованные волны, отражаются от препятствий менее интенсивно, чем вертикально.
При распространении вертикально поляризованных волн, земная поверхность поглощает на 25% меньше их энергии.

При прохождении ионосферы, происходит вращение плоскости поляризации, как следствие, на приемной стороне не совпадает вектор поляризации и КПД приемной части падает. Для решения проблемы, применяют круговую поляризацию.

Все эти факторы факторы следует учитывать при расчете радиолиний с максимальной эффективностью.

PS:
Данная статья обрисовывает лишь небольшую часть антенн и не претендует на замену учебнику антенно-фидерных устройств.

Излучение радиоволн — процесс возбуждения бегущих электромагнитных волн радиодиапазона в пространстве, окружающем источник колебаний тока или заряда. При этом энергия источника преобразуется в энергию распространяющихся в пространстве электромагнитных волн. Приём радиоволн является процессом, обратным процессу излучения. Он состоит в преобразовании энергии электромагнитных волн в энергию переменного тока. И. и п. р. осуществляются с помощью передающих и приёмных антенн (См. Антенна).

Излучение радиоволн.

Рис. 1. Виток катушки индуктивности.

Источником первичных электрических колебаний могут быть переменные токи, текущие по проводникам, переменные поля и т. п. Однако переменные токи относительно низкой частоты (например, промышленной частоты 50 гц) для излучения непригодны: на этих частотах нельзя создать эффективный излучатель. Действительно, если электрические колебания происходят, например, в катушке индуктивности, размеры которой малы по сравнению с длиной волны λ, соответствующей частоте колебаний тока, текущего в катушке, для каждого участка с одним направлением тока, например А (рис. 1), существует другой участок В, удалённый от А на расстояние, меньшее, чем λ/2, в котором в тот же момент времени направление тока противоположно. На больших расстояниях от витка волны, излученные элементами А и В, ослабляют друг друга. Так как виток состоит из таких пар противофазных элементов, то он, а следовательно вся катушка, излучает плохо. Также плохо излучает Колебательный контур , содержащий катушку индуктивности и конденсатор. В каждый момент времени заряды на обкладках конденсатора равны по величине, противоположны по знаку и удалены друг от друга на расстояние, значительно меньшее, чем λ/2. Из сказанного следует, что для эффективного излучения радиоволн необходима незамкнутая (открытая) цепь, в которой либо нет участков с противофазными колебаниями тока или заряда, либо расстояние между ними не мало по сравнению с λ/2. Если размеры цепи таковы, что время распространения изменений электромагнитного поля в ней сравнимо с периодом колебаний тока или заряда (скорость распространения возмущений конечна), то условия квазистационарности не выполняются (см. Квазистационарный процесс) и часть энергии источника уходит в виде электромагнитных волн. Для практических целей обычно применяют электромагнитные волны с λ < 10 км.

Излучатели.

Рис. 2. Электрический диполь.

Простейший излучатель радиоволн состоит из двух отрезков А и В прямолинейного проводника, присоединённых к концам OO’ двухпроводной линии, вдоль которой распространяется электромагнитная волна (рис. 2). В отрезках А и В под действием электрического поля волны возникает движение зарядов, т. е. переменный ток. В каждый момент времени заряды в точках О и О’ равны по величине и противоположны по знаку, т. е. отрезки А и В образуют электрический диполь, что определяет конфигурацию создаваемого им электрического поля. С другой стороны, токи в отрезках А и В совпадают по направлению, поэтому силовые линии магнитного поля, как и в случае прямолинейного тока, — окружности (рис. 3).

Рис. 3. Структура электрического Е и магнитного H полей вблизи диполя: пунктир — силовые линии электрического поля; тонкие линии — силовые линии магнитного поля; О — точка наблюдения.

Таким образом, в пространстве, окружающем диполь, возникает электромагнитное поле, в котором поля Е и Н перпендикулярны друг другу. Электромагнитное поле распространяется в пространстве, удаляясь от диполя (рис. 4).

Рис. 4. Мгновенные картины электрических силовых линий вблизи диполя для промежутков времени, отстоящих друг от друга на 1/8 периода Т колебаний тока.

Волны, излучаемые диполем, имеют определённую поляризацию. Вектор напряжённости электрического поля Е волны в точке наблюдения О (рис. 3) лежит в плоскости, проходящей через диполь и радиус-вектор r, проведённый от центра диполя к точке наблюдения. Вектор магнитного поля Н перпендикулярен этой плоскости.

Переменное электромагнитное поле возникает во всём пространстве, окружающем диполь, и распространяется от диполя во всех направлениях. Диполь излучает сферическую волну, которую на большом расстоянии от диполя можно считать плоской (локально-плоской). Однако амплитуды напряжённостей электрического и магнитного полей, создаваемых диполем, а следовательно и излучаемая энергия, в разных направлениях различны. Они максимальны в направлениях, перпендикулярных диполю, и постепенно убывают до нуля вдоль оси диполя. В этом направлении диполь практически не излучает. Распределение излучаемой мощности по различным направлениям характеризуется диаграммой направленности. Пространственная диаграмма направленности диполя имеет вид тороида (рис. 5).

Рис. 5. Пространственная диаграмма направленности электрического диполя.

Рис. 6. Несимметричный вибратор; Г — генератор электрических колебаний.

Полная мощность, излучаемая диполем, зависит от подводимой мощности и соотношения между его длиной l и длиной волны λ. Для того чтобы диполь излучал значительную долю подводимой к нему мощности, его длина не должна быть мала по сравнению с λ/2. С этим связана трудность излучения очень длинных волн. Если l подобрано правильно и потери энергии на нагрев проводников диполя и линии малы, то преобладающая доля мощности источника тратится на излучение. Таким образом, диполь является потребителем мощности источника, подобно включенному в конец линии активному сопротивлению, потребляющему подводимую мощность. В этом смысле диполь обладает сопротивлением излучения Rи, равным тому активному сопротивлению, в котором потреблялась бы такая же мощность. Описанный выше диполь является простейшей передающей антенной и называется симметричным вибратором. Впервые такой вибратор использовал Г. Герц (1888) в опытах, обнаруживших существование радиоволн. Электрические колебания в диполе Герца (см. Герца вибратор) возбуждались с помощью искрового разряда — единственного известного в то время источника электрических колебаний. Наряду с симметричным вибратором применяется (для более длинных волн) несимметричный вибратор (рис. 6), возбуждаемый у основания и излучающий равномерно в горизонтальной плоскости.

Наряду с проволочными антеннами (проволочными вибраторами) существуют и другие виды излучателей радиоволн. Широкое применение получила магнитная антенна. Она представляет собой стержень из магнитного материала с высокой магнитной проницаемостью μ, на который намотана катушка из тонкого провода. Силовые линии магнитного поля магнитной антенны повторяют картину силовых линий электрического поля проволочного диполя (рис. 7, а, б), что обусловлено принципом двойственности.

Рис. 7. Сопоставление электрического диполя (а), магнитного (6) и щелевого (в, г) излучателей; 1 — проводник с током; 2 — стержень из материала с высокой магнитной проницаемостью; 3 — металлический экран, в котором прорезана щель; 4 — проводники, идущие от генератора высокочастотных электрических колебаний; 5 — силовые линии электрического поля; 6 — силовые линии магнитного поля.

На частотах ниже 30 Мгц преобладающую роль играют атмосферные шумы. В области сантиметровых волн решающий вклад вносит излучение поверхности Земли, которое попадает в антенну обычно за счёт боковых лепестков её диаграммы направленности. Поэтому для слабонаправленных антенн антенная температура, обусловленная Землёй, высока; она может достигать 140—250 К; у остронаправленных антенн она составляет обычно 50—80 К, а специальными мерами её можно снизить до 15—20 К.

О конкретных типах антенн, их характеристиках и применении см. в ст. Антенна .

Лит.: Хайкин С. Э., Электромагнитные волны, 2 изд., М. — Л., 1964; Гольдштейн Л. Д., Зернов Н. В., Электромагнитные поля и волны, М., 1956; Рамо С., Уиннери Дж., Поля и волны в современной радиотехнике, пер. с англ., 2 изд., М. — Л., 1950. Под редакцией Л. Д. Бахража.

Материал из Юнциклопедии


Радиолокация (от «радио» и латинского слова locatio - расположение) - область науки и техники, занимающаяся наблюдением различных объектов в воздухе, на воде, на земле, определением их местоположения и расстояния до них при помощи радио. Всем хорошо знакомо эхо. Мы слышим звук, когда говорим, и слышим вторично, когда он возвращается после отражения от стены здания или утеса. В радиолокации происходит то же самое, но с той только разницей, что вместо звуковых волн действуют радиоволны. Радиолокатор посылает импульс радиоволн в сторону объекта и принимает его после отражения. Зная скорость распространения радиоволн и время прохождения импульса до отражающего объекта и обратно, нетрудно определить расстояние между ними.

Любой радиолокатор состоит из радиопередатчика, радиоприемника, работающего на той же волне, направленной антенны и индикаторного устройства (см. Индикатор).

Передатчик радиолокатора посылает в антенну сигналы короткими очередями - импульсами. Антенна радиолокатора, обычно имеющая форму вогнутого прожекторного зеркала, фокусирует радиоволны в узкий луч и направляет его на объект (рис. 1). Она может вращаться и изменять угол наклона, посылая радиоволны в различных направлениях. Одна и та же антенна попеременно автоматически с частотой импульсов подключается то к радиопередатчику, то к радиоприемнику (рис. 2). В промежутках между излучениями импульсов радиопередатчика работает радиоприемник. Он принимает отраженные радиоволны, а включенное на его выходе индикаторное устройство показывает расстояние до объекта.

Роль индикаторного устройства выполняет электроннолучевая трубка (см. Кинескоп). Электронный луч перемещается по экрану трубки с точно заданной скоростью, создавая движущуюся светящуюся линию. В момент посылки радиопередатчиком импульса радиоволн светящаяся линия на экране трубки делает всплеск. Аналогичный всплеск на светящейся линии трубки появляется и по возвращении «радиоэха». Поскольку скорость распространения радиоволн известна - она равна скорости света (300 000 км/с), то по интервалу между всплесками электронного луча на экране трубки можно определить расстояние до объекта. Радиоволны отражаются землей, водой, деревьями, металлическими и другими предметами. Наилучшее отражение происходит тогда, когда длина излучаемых радиоволн меньше отражающего их предмета. Поэтому радиолокаторы работают в диапазоне ультракоротких волн (см. Радио).

Радиолокаторы, установленные на судах, позволяют получить картину береговой линии, «прощупать» водные просторы, они предупреждают о приближении других судов и плавающих ледяных гор - айсбергов. По сигналам на экранах радиолокаторов диспетчеры аэропортов (см. Диспетчерское управление) контролируют движение самолетов по воздушным трассам, а пилоты точно определяют высоту полета и наблюдают очертания местности, над которой они летят (см. Навигационные приборы). Используя радиолокационные средства, синоптики следят за образованием и передвижением облаков, развитием и прохождением ураганов и тайфунов (см. Метеорологическая техника).

В данной статье расскажем вам про радиоволны и свойства их распространения.

Многие люди, не обладая элементарными понятиями о видах энергии, их свойствах, часто рассуждают о способах беспроводной передачи энергии на расстояния. Другие, не зная, как распространяются радиоволны, изготавливают антенны к своим радиопередатчикам и радиоприемникам, пытаясь добиться максимальных характеристик передачи и приема, но у них ничего не получается. Одни читают умные книги, а другие основываются на опыте, или совете малограмотного товарища. Для того, чтобы развеять хотя бы часть заблуждений и дать представление об электромагнитных волнах и как их виде – радиоволнах посвящена эта статья.

Как обычно, я не буду расписывать формул Максвелла, Фарадея и других известных деятелей науки. Их в огромном количестве имеется в учебниках физики, читая которые, даже я – имеющий образование и опыт работы в радиоэлектронике не понимаю, почему в этих учебниках приводятся заумные формулы, а простейшая, имеющая полезное практическое значение информация отсутствует? Ведь на следующий день, или неделю после окончания школы, ученик эти формулы не вспомнит, а простых понятий, как не знал, так и знать не будет.

где: f – частота, λ – длина волны, с – скорость света, равная 300 000 км/сек.

Радиоволны подразделяются на несколько диапазонов:

Сверхдлинные «СДВ» – частотой 3 – 30 кГц, с длиной волны 100 — 10 км;

Длинные «ДВ» – частотой 30 – 300 кГц, с длиной волны 10 — 1 км;

Средние «СВ» – частотой 300 – 3000 кГц, с длиной волны 1000 — 100 метров;

Короткие «КВ» – частотой 3 – 30 МГц, с длиной волны 100 — 10 метров;

Ультракороткие «УКВ» , включающие:

— метровые «МВ» – частотой 30 – 300 МГц, с длиной волны 10 — 1 метра;

— дециметровые «ДМВ» – частотой 300 – 3000 МГц, с длиной волны 10 — 1 дм;

— сантиметровые «СМВ» – частотой 3 – 30 ГГц, с длиной волны 10 — 1 см;

— миллиметровые «ММВ» – частотой 30 – 300 ГГц, с длиной волны 10 — 1 мм;

— субмиллиметровые «СММВ» – частотой 300 – 6000 ГГц, с длиной волны 1 – 0,05 мм;

Диапазоны от дециметровых, до миллиметровых волн, из-за их очень высокой частоты называют сверхвысокими частотами «СВЧ» .

Естественно все перечисленные диапазоны радиоволн, как отечественные, так и буржуйские могут подразделяться на поддиапазоны.

Вспомните практическую важность поляризации ЭМВ — если радиопередатчик и радиоприемник настроены на одну и ту же частоту, но имеют разную поляризацию, например у передатчика вертикальная, а у приемника – горизонтальная, то радиосвязь будет плохой. К этому стоит добавить диаграмму направленности штыревой антенны, и тогда на примере двух радиотелефонов — переносных радиостанций (1 и 2) изображённых на рисунке ниже, можно сделать логическое заключение:

Если антенны радиопередатчика и радиоприемника ориентированы в пространстве относительно горизонта одинаково и диаграммы направленности антенн максимумами направлены друг на друга, то связь будет наилучшей. Если не выполняется одно из указанных условий, то связи либо не будет, либо она будет плохой.

На дальность радиосвязи также влияет ещё один параметр – толщина элементов вибратора, чем она больше, тем антенна широкополоснее – диапазон хорошо принимаемых частот шире, но уровень сигнала практически на всех частотах уменьшается. Это связано с тем, что дипольная антенна – это тот же колебательный контур, а при расширении полосы частот АЧХ резонанса, амплитуда резонанса уменьшается. Поэтому не удивляйтесь, что телевизионная антенна, сделанная из пивных алюминиевых банок в городе, где уровень сигнала телевизионной вышки большой, принимает телевизионный сигнал разных каналов не хуже, а зачастую лучше сложной профессиональной антенны.

Хорошие профессиональные радиоантенны обладают показателем – коэффициентом усиления антенны . Ведь обычный полуволновой вибратор не усиливает сигнал, его действие избирательно – на определённой частоте, в определённых направлениях и определённой поляризации. Чтобы в приемнике было меньше помех, увеличить дальность приема-передачи, одновременно при этом сузить диаграмму направленности антенны (общепринятое название — ДНА), простой полуволновой вибратор не годится. Антенну усложняют.

Ранее, я писал о влиянии различных препятствий — их отражательном свойстве. Если препятствие по своим размерам не соизмеримо (на порядок меньше) с длиной радиоволны, тогда это не является для радиосигнала препятствием, оно никак на него не влияет. Если препятствие находится в плоскости параллельной электрической волне и больше длины волны, тогда это препятствие отражает радиоволну. Если препятствие по протяженности кратно (равно четверти, половине или целой) длине волны, сориентировано параллельно электрической волне и перпендикулярно направлению распространения волны, тогда это препятствие действует как резонансный колебательный контур на целой длине волны или её гармониках, и имеет наибольшие отражательные свойства.

Именно эти описанные выше свойства и используются в сложных антеннах. Так, один из вариантов улучшения приемных свойств антенны является установка дополнительного рефлектора (отражателя), принцип действия которого основывается на отражении радиоволны и синфазного сложения двух сигналов – от телецентра (ТЦ) и от рефлектора. Диаграмма направленности при этом сужается и вытягивается. На рисунке изображена антенна, состоящая из петлевого полуволнового вибратора(1) и рефлектора(2). Длина вибратора (А) этой телевизионной антенны выбирается равной половине длины волны среднего телевизионного канала, помноженную на коэффициент укорочения. Длина рефлектора (Б) выбирается равной половине длины волны минимального телевизионного канала (с максимальной длиной волны). Расстояние между вибратором и рефлектором (С) выбирается таким, чтобы происходило синфазное сложение прямого и отражённого сигнала – половине длины волны.

Следующий способ дальнейшего усиления приемного сигнала путём сужения и вытягивания ДНА – добавление пассивного вибратора – директора . Принцип действия всё на том же синфазном сложении. Диаграмма направленности при этом ещё сильнее сужается и вытягивается. На рисунке изображена антенна «волновой канал» , состоящая из рефлектора (1), петлевого полуволнового вибратора (2) и одного директора (3). Дальнейшее добавление директоров ещё сильнее сужает и вытягивает диаграмму направленности. Длина директоров (В) выбирается чуть меньше длины активного вибратора. Для увеличения коэффициента усиления антенны и её широкополосности, перед активным вибратором добавляются директоры с постепенным уменьшением их длины. Обратите внимание, что длина активного вибратора равна половине средней длине волны принимаемого сигнала, длина рефлектора – больше половины длины волны, а длина директора – меньше половины длины волны. Расстояния между элементами выбирается также около половины длины волны.

В профессиональной технике часто применяется способ сужения ДНА и повышения усилительных свойств антенны – фазированная антенная решётка , в которой параллельно подключается несколько антенн (например простых диполей, или антенн типа «волновой канал»). В результате происходит сложение токов соседних каналов, и как результат – повышение мощности сигнала.

На сверхвысоких частотах в качестве вибратора антенны применяют волновод, а в качестве рефлектора применяют сплошное полотно, все точки которого равноудалены от плоскости вибратора (на одинаковом расстоянии) – параболоид вращения , или в простонародье – «тарелка». Такая антенна обладает очень узкой диаграммой направленности и высоким коэффициентом усиления антенны.

Выводы на основе распространения и сложности формирования радиоволн

Как и куда распространяются радиоволны можно рассчитать с помощью умных формул и преобразований только для идеальных условий – при отсутствии естественных препятствий. Для этого, элементы антенн, различные поверхности должны быть идеально ровные. На практике, из-за влияния многих факторов преломления и отражения, ещё ни один «учёный мозг» не смог с высокой достоверностью рассчитать распространение радиоволн в естественных природных условиях. Существуют области пространства уверенного приема и зоны радиотени – там, где прием вовсе отсутствует. Только в кино альпинисты не отвечают на вызов по радиосвязи потому, что у них заняты руки, или они сами заняты «спасением мира», на самом деле радиосвязь – дело не устойчивое и чаще альпинисты не отвечают потому, что связи просто нет – отсутствует прохождение радиоволн. Именно зависимость радиосвязи от природных явлений (дождь, низкая облачность, разряженность атмосферы и т.д.) привела к возникновению понятия «радиолюбитель» . Это сейчас понятие «радиолюбитель» – человек, который любит паять радиосхемы. Лет двадцать назад это был «связист-коротковолновик», который на изготовленном своими руками маломощном трансивере связывался с другим радиолюбителем (или по другому — радиокорреспондентом), находящимся на другой стороне Земли, за что получал «бонусы». Раньше даже проводились соревнования по радиосвязи. Нынче тоже проводятся, но с развитием техники это стало не так актуально. Среди этих радиолюбителей-связистов есть много недовольных тем, что обыкновенные «паялы», не сидящие в наушниках в поисках радиокорреспондентов для организации радиообмена, называют себя радиолюбителями.

Радиоволны, посланные в пространство, распространяются в нём со скоростью света. Но как только они встречают на своём пути какой-нибудь объект, например, самолёт или корабль, они отражаются от него и возвращаются обратно. Следовательно, с их помощью можно обнаруживать различные удалённые объекты, наблюдать за ними и определять их координаты и параметры.

Обнаружение местоположения объектов с помощью радиоволн называют радиолокацией .

Как появилась радиолокация

Александр Степанович Попов

В 1897 г. во время опытных сеансов радиосвязи между морским транспортом «Европа» и крейсером «Африка», проводимых русским физиком Александром Степановичем Поповым , обнаружили интересное явление. Оказалось, что правильность распространения электромагнитной волны искажали все металлические предметы – мачты, трубы, снасти как на корабле, с которого сигнал отправлялся, так и на корабле, где его принимали. Когда же между этими кораблями появился крейсер «Лейтенант Ильин», радиосвязь между ними нарушилась. Так было открыто явление отражения радиоволн от корпуса корабля.

Но если радиоволны способны отражаться от корабля, то с их помощью корабли можно и обнаруживать. А заодно и другие цели.

И уже в 1904 г. немецкий изобретатель Кристиан Хюльсмайер подал заявку на первый радиолокатор, а в 1905 г. получил патент на использование эффекта отражения радиоволн для поиска кораблей. А ещё через год, в 1906 г., он предложил использовать этот эффект, чтобы определять расстояние до объекта, отражающего радиоволны.

Кристиан Хюльсмайер

В 1934 г. шотландский физик Роберт Александр Уотсон-Уотт получил патент на изобретение системы для обнаружения воздушных объектов и уже в следующем году продемонстрировал одно из первых таких устройств.

Роберт Александр Уотсон-Уотт

Как работает радиолокатор

Определение местонахождения чего-либо называют локацией . Для этого в технике применяют устройство, называемое локатором . Локатор излучает какой-либо вид энергии, например, звук или оптический сигнал, в сторону предполагаемого объекта, а затем принимает отражённый от него сигнал. Радиолокатор использует для этой цели радиоволны.

На самом деле радиолокатор, или радиолокационная станция (РЛС), - сложная система. Конструкции различных радиолокаторов могут различаться, но принцип их работы одинаков. Радиопередатчик посылает в пространство радиоволны. Достигнув цели, они отражаются от неё, как от зеркала, и возвращаются назад. Такая радиолокация называется активной.

Основные узлы радиолокатора (РЛС) – передатчик, антенна, антенный переключатель, приёмник, индикатор.

По способу излучения радиоволн РЛС делятся на импульсные и непрерывного действия.

Как работает импульсная радиолокационная станция?

Передатчик радиоволн включается на короткое время, поэтому радиоволны излучаются импульсами. Они поступают в антенну, которая располагается в фокусе зеркала параболоидной формы. Это нужно для того, чтобы радиоволны распространялись в определённом направлении. Работа радиолокатора похожа на работу светового прожектора, лучи которого подобным образом направляются в небо и, освещая его, ищут нужный объект. Но работа прожектора этим и ограничивается. А радиолокатор не только посылает радиоволны, но и принимает сигнал, отражённый от найденного объекта (радиоэхо). Эту функцию выполняет приёмник.

Антенна импульсного радиолокатора работает то на передачу, то на приём. Для этого в ней есть переключатель. Как только радиосигнал послан, отключается передатчик и включается приёмник. Наступает пауза, во время которой радиолокатор как бы «слушает» эфир и ждёт радиоэхо. И как только антенна улавливает отражённый сигнал, тут же отключается приёмник и включается передатчик. И так далее. Причём время паузы может во много раз превышать длительность импульса. Таким образом излучаемый и принимаемый сигнал разделяются во времени.

Принятый радиосигнал усиливается и обрабатывается. На индикаторе, который в простейшем случае представляет собой дисплей, отображается обработанная информация, например, размеры объекта или расстояние до него, или сама цель и окружающая её обстановка.

Радиоволны распространяются в пространстве со скоростью света. Поэтому, зная время t от излучения импульса радиосигнала до его возвращения, можно определить расстояние до объекта.

R = t/2 ,

где с – скорость света.

Радиолокатор непрерывного действия высокочастотные радиоволны излучает непрерывно. Поэтому антенной улавливается также непрерывный отражённый сигнал. В своей работе такие РЛС используют эффект Доплера . Суть этого эффекта в том, что частота сигнала, отражённого от объекта, движущегося по направлению к радиолокатору, выше частоты сигнала, отражённого от объекта, удаляющегося от него, несмотря на то, что частота излучаемого сигнала постоянна. Поэтому такие РЛС используют для определения параметров движущегося объекта. Пример радиолокатора, в основе работы которого лежит эффект Доплера – радар, используемый сотрудниками ГИБДД для определения скорости движущегося автомобиля.

В поисках объекта направленный луч антенны РЛС сканирует пространство, описывая полный круг, либо выбирая определённый сектор. Он может быть направлен по винтовой линии, по спирали. Обзор также может быть коническим или линейным. Всё зависит от задачи, которую он должен выполнить.

Если необходимо постоянно следить за выбранной движущейся целью, антенна радиолокатора всё время направлена на неё и поворачивается вслед за ней с помощью специальных следящих систем.

Применение радиолокаторов

Впервые радиолокационные станции начали применяться во время Второй мировой войны для обнаружения военных самолётов, кораблей и подводных лодок.

Так в конце декабря 1943 г. радиолокаторы, установленные на английских кораблях, помогли обнаружить фашистский линкор, вышедший ночью из порта Альтенфиорд в Норвегии, чтобы перехватить военные суда. Огонь по линкору вёлся очень точно, и вскоре он пошёл ко дну.

Первые РЛС были не очень совершенными, в отличие от современных, надёжно защищающих воздушное пространство от воздушных налётов и ракетного нападения, распознающих практически любые военные объекты на суше и на море. Радиолокационное наведение применяется в самонаводящихся ракетах для распознавания местности. РЛС осуществляют слежение за полётами межконтинентальных ракет.

РЛС нашли своё применение и в мирной жизни. Без них не могут обходиться лоцманы, проводящие корабли через узкие проливы, диспетчеры в аэропортах, руководящие полётами гражданских самолётов. Они незаменимы при плавании в условиях ограниченной видимости – ночью или при плохой погоде. С их помощью определяют рельеф дна морей и океанов, исследуют загрязнения их поверхностей. Их используют метеорологи для определения грозовых фронтов, измерения скорости ветра и облаков. На рыболовных судах радиолокаторы помогают обнаруживать косяки рыбы.

Очень часто радиолокаторы, или радиолокационные станции (РЛС), называют радарами . И хоть сейчас это слово стало самостоятельным, на самом деле это аббревиатура, возникшая из английских слов «radio detection and ranging » , что означает «радиообнаружение и дальнометрия» и отражает суть радиолокации.