Плитка и... Из дерева Выбор покрытия

Магнитный поток формулировка. Магнитный поток. Примеры решения задач


Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал См. также: Портал:Физика

Магни́тный пото́к - физическая величина, равная произведению модуля вектора магнитной индукции \vec B на площадь S и косинус угла α между векторами \vec B и нормалью \mathbf{n}. Поток \Phi_B как интеграл вектора магнитной индукции \vec B через конечную поверхность S определяется через интеграл по поверхности:

{{{1}}}

При этом векторный элемент dS площади поверхности S определяется как

{{{1}}}

Квантование магнитного потока

Значения магнитного потока Φ , проходящего через

Напишите отзыв о статье "Магнитный поток"

Ссылки

Отрывок, характеризующий Магнитный поток

– C"est bien, mais ne demenagez pas de chez le prince Ваsile. Il est bon d"avoir un ami comme le prince, – сказала она, улыбаясь князю Василию. – J"en sais quelque chose. N"est ce pas? [Это хорошо, но не переезжайте от князя Василия. Хорошо иметь такого друга. Я кое что об этом знаю. Не правда ли?] А вы еще так молоды. Вам нужны советы. Вы не сердитесь на меня, что я пользуюсь правами старух. – Она замолчала, как молчат всегда женщины, чего то ожидая после того, как скажут про свои года. – Если вы женитесь, то другое дело. – И она соединила их в один взгляд. Пьер не смотрел на Элен, и она на него. Но она была всё так же страшно близка ему. Он промычал что то и покраснел.
Вернувшись домой, Пьер долго не мог заснуть, думая о том, что с ним случилось. Что же случилось с ним? Ничего. Он только понял, что женщина, которую он знал ребенком, про которую он рассеянно говорил: «да, хороша», когда ему говорили, что Элен красавица, он понял, что эта женщина может принадлежать ему.
«Но она глупа, я сам говорил, что она глупа, – думал он. – Что то гадкое есть в том чувстве, которое она возбудила во мне, что то запрещенное. Мне говорили, что ее брат Анатоль был влюблен в нее, и она влюблена в него, что была целая история, и что от этого услали Анатоля. Брат ее – Ипполит… Отец ее – князь Василий… Это нехорошо», думал он; и в то же время как он рассуждал так (еще рассуждения эти оставались неоконченными), он заставал себя улыбающимся и сознавал, что другой ряд рассуждений всплывал из за первых, что он в одно и то же время думал о ее ничтожестве и мечтал о том, как она будет его женой, как она может полюбить его, как она может быть совсем другою, и как всё то, что он об ней думал и слышал, может быть неправдою. И он опять видел ее не какою то дочерью князя Василья, а видел всё ее тело, только прикрытое серым платьем. «Но нет, отчего же прежде не приходила мне в голову эта мысль?» И опять он говорил себе, что это невозможно; что что то гадкое, противоестественное, как ему казалось, нечестное было бы в этом браке. Он вспоминал ее прежние слова, взгляды, и слова и взгляды тех, кто их видал вместе. Он вспомнил слова и взгляды Анны Павловны, когда она говорила ему о доме, вспомнил тысячи таких намеков со стороны князя Василья и других, и на него нашел ужас, не связал ли он уж себя чем нибудь в исполнении такого дела, которое, очевидно, нехорошо и которое он не должен делать. Но в то же время, как он сам себе выражал это решение, с другой стороны души всплывал ее образ со всею своею женственной красотою.

В ноябре месяце 1805 года князь Василий должен был ехать на ревизию в четыре губернии. Он устроил для себя это назначение с тем, чтобы побывать заодно в своих расстроенных имениях, и захватив с собой (в месте расположения его полка) сына Анатоля, с ним вместе заехать к князю Николаю Андреевичу Болконскому с тем, чтоб женить сына на дочери этого богатого старика. Но прежде отъезда и этих новых дел, князю Василью нужно было решить дела с Пьером, который, правда, последнее время проводил целые дни дома, т. е. у князя Василья, у которого он жил, был смешон, взволнован и глуп (как должен быть влюбленный) в присутствии Элен, но всё еще не делал предложения.

Среди физических величин важное место занимает магнитный поток. В этой статье рассказывается о том, что это такое, и как определить его величину.

Что такое магнитный поток

Это величина, определяющая уровень магнитного поля, проходящего через поверхность. Обозначается «ФФ» и зависит от силы поля и угла прохождения поля через эту поверхность.

Рассчитывается она по формуле:

ФФ=B⋅S⋅cosα, где:

  • ФФ – магнитный поток;
  • В – величина магнитной индукции;
  • S – площадь поверхности, через которую проходит это поле;
  • cosα – косинус угла между перпендикуляром к поверхности и потоком.

Единицей измерения в системе СИ является «вебер» (Вб). 1 вебер создаётся полем величиной 1 Тл, проходящим перпендикулярно поверхности площадью 1 м².

Таким образом, поток максимален при совпадении его направления с вертикалью и равен «0», если он параллелен с поверхностью.

Интересно. Формула магнитного потока аналогична формуле, по которой рассчитывается освещённость.

Постоянные магниты

Одним из источников поля являются постоянные магниты. Они известны много веков. Из намагниченного железа изготавливалась стрелка компаса, а в Древней Греции существовала легенда об острове, притягивающем к себе металлические части кораблей.

Постоянные магниты есть различной формы и изготавливаются из разных материалов:

  • железные – самые дешёвые, но обладают меньшей притягивающей силой;
  • неодимовые – из сплава неодима, железа и бора;
  • альнико – сплав железа, алюминия, никеля и кобальта.

Все магниты являются двухполюсными. Это заметнее всего в стержневых и подковообразных устройствах.

Если стержень подвесить за середину или положить на плавающий кусочек дерева или пенопласта, то он развернётся по направлению «север-юг». Полюс, показывающий на север, называют северным и на лабораторных приборах красят в синий цвет и обозначают «N». Противоположный, показывающий на юг, – красный и обозначен » S». Одноимёнными полюсами магниты притягиваются, а противоположными – отталкиваются.

В 1851 году Майкл Фарадей предложил понятие о замкнутых линиях индукции. Эти линии выходят из северного полюса магнита, проходят по окружающему пространству, входят в южный и внутри устройства возвращаются к северному. Ближе всего линии и напряжённость поля у полюсов. Здесь также выше притягивающая сила.

Если на устройство положить кусок стекла, а сверху тонким слоем насыпать железные опилки, то они расположатся вдоль линий магнитного поля. При расположении рядом нескольких приборов опилки покажут взаимодействие между ними: притяжение или отталкивание.

Магнитное поле Земли

Нашу планету можно представить в виде магнита, ось которого наклонена на 12 градусов. Пересечения этой оси с поверхностью называют магнитными полюсами. Как и у любого магнита, силовые линии Земли идут от северного полюса к южному. Возле полюсов они проходят перпендикулярно поверхности, поэтому там стрелка компаса ненадёжна, и приходится использовать другие способы.

Частицы «солнечного ветра» имеют электрический заряд, поэтому при движении вокруг них появляется магнитное поле, взаимодействующее с полем Земли и направляющее эти частицы вдоль силовых линий. Тем самым это поле защищает земную поверхность от космической радиации. Однако возле полюсов эти линии направлены перпендикулярно поверхности, и заряженные частицы попадают в атмосферу, вызывая северное сияние.

В 1820 году Ганс Эрстед, проводя эксперименты, увидел воздействие проводника, по которому протекает электрический ток, на стрелку компаса. Через несколько дней Андре-Мари Ампер обнаружил взаимное притяжение двух проводов, по которым протекал ток одного направления.

Интересно. Во время электросварочных работ рядом расположенные кабеля двигаются при изменении силы тока.

Позже Ампер предположил, что это связано с магнитной индукцией тока, протекающего по проводам.

В катушке, намотанной изолированным проводом, по которому протекает электрический ток, поля отдельных проводников усиливают друг друга. Для увеличения силы притяжения катушку наматывают на незамкнутом стальном сердечнике. Этот сердечник намагничивается и притягивает железные детали или вторую половину сердечника в реле и контакторах.

Электромагнитная индукция

При изменении магнитного потока в проводе наводится электрический ток. Этот факт не зависит от того, какими причинами было вызвано это изменение: перемещением постоянного магнита, движением провода или изменением силы тока в рядом расположенном проводнике.

Это явление было открыто Майклом Фарадеем 29 августа 1831 года. Его эксперименты показали, что ЭДС (электродвижущая сила), появляющаяся в контуре, ограниченном проводниками, прямопропорциональна скорости изменения потока, проходящего через площадь этого контура.

Важно! Для возникновения ЭДС провод должен пересекать силовые линии. При движении вдоль линий ЭДС отсутствует.

Если катушка, в которой возникает ЭДС, включена в электрическую цепь, то в обмотке возникает ток, создающий в катушке индуктивности своё электромагнитное поле.

При движении проводника в магнитном поле в нём наводится ЭДС. Её направленность зависит от направления движения провода. Метод, при помощи которого определяется направление магнитной индукции, называется «метод правой руки».

Расчёт величины магнитного поля важен для проектирования электрических машин и трансформаторов.

Видео

Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие .

Можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное , размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Соединение кабелей — технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции . У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов к жиле и ее экрану. , полученное в результате измерений, должно быть не менее нормированного значения, установленного для данной марки кабеля.

Измерив сопротивление изоляции, переходят к установлению или нумерации жил, или направлений повива, которые указывают стрелками на временно закрепленных бирках (рис. 1).

Закончив подготовительные работы, можно приступать к разделке кабелей. Геометрию разделки соединений концов кабелей видоизменяют в целях обеспечения удобства восстановления изоляции жил и оболочки, а для многожильных кабелей также для получения приемлемых размеров места соединения кабелей.

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ »

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:

  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.

Магнитный поток (поток линий магнитной индукции) через контур численно равен произведению модуля вектора магнитной индукции на площадь, ограниченную контуром, и на косинус угла между направлением вектора магнитной индукции и нормалью к поверхности, ограниченной этим контуром.

Формула работы силы Ампера при движении прямого проводника с постоянным током в однородном магнитном поле.

Таким образом, работа силы Ампера может быть выражена через силу тока в перемещаемом проводнике и изменение магнитного потока через контур, в который включен этот проводник:

Индуктивность контура.

Индуктивность - физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:

где Ф - магнитный поток через контур, I - сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Энергия магнитного поля.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии.

Электромагнитная индукция.

Электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Опыты Фарадея. Объяснение электромагнитной индукции.

Если подносить постоянный магнит к катушке или наоборот (рис.3.1), то в катушке возникнет электрический ток. То же самое происходит с двумя близко расположенными катушками: если к одной из катушек подключить источник переменного тока, то в другой также возникнет переменный ток, но лучше всего этот эффект проявляется, если две катушки соединить сердечником

По определению Фарадея общим для этих опытов является следующее: если поток вектора индукции, пронизывающий замкнутый, проводящий контур, меняется, то в контуре возникает электрический ток.

Это явление называют явлением электромагнитной индукции , а ток – индукционным. При этом явление совершенно не зависит от способа изменения потока вектора магнитной индукции.

Формула э.д.с. электромагнитной индукции.

ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром.

Правило Ленца.

Правило Ленца

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению магнитного потока, которым он вызван.

Самоиндукция, ее объяснение.

Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока.

Замыкание цепи
При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).
В результате Л1 загорается позже, чем Л2.

Размыкание цепи
При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключении ярко вспыхивает.

в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

Формула э.д.с. самоиндукции.

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Первое и второе положения теории электромагнитного поля Максвелла.

1. Всякое перемещенное электрическое поле порождает вихревое магнитное поле. Переменное электрическое поле было названо Максвеллом, так как оно, подобно обычному току, вызывает магнитное поле. Вихревое магнитное поле порождается как токами проводимости Iпр (движущимися электрическими зарядами), так и токами смещения (перемещенным электрическим полем Е).

Первое уравнение Максвелла

2. Всякое перемещенное магнитное поле порождает вихревое электрическое (основной закон электромагнитной индукции).

Второе уравнение Максвелла:

Электромагнитное излучение.

Электромагни́тные во́лны, электромагни́тное излуче́ние - распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.

3.1. Волна - это колебания, распространяющиеся в пространстве в течение времени.
Механические волны могут распространяться только в какой-нибудь среде (веществе): в газе, в жидкости, в твердом теле. Источником волн являются колеблющиеся тела, которые создают в окружающем пространстве деформацию среды. Необходимым условием для появления упругих волн является возникновение в момент возмущения среды препятствующих ему сил, в частности, упругости. Они стремятся сблизить соседние частицы, когда они расходятся, и оттолкнуть их друг от друга в момент сближения. Силы упругости, действуя на удаленные от источника возмущения частицы, начинают выводить их из равновесия. Продольные волны характерны только газообразным и жидким средам, а вот поперечные – также и твердым телам: причина этого заключается в том, что частицы, составляющие данные среды, могут свободно перемещаться, так как жестко не зафиксированы, в отличие от твердых тел. Соответственно, поперечные колебания принципиально невозможны.

Продольные волны возникают тогда, когда частицы среды колеблются, ориентируясь вдоль вектора распространения возмущения. Поперечные волны распространяются в перпендикулярном вектору воздействия направлении. Короче: если в среде деформация, вызванная возмущением, проявляется в виде сдвига, растяжения и сжатия, то речь идет о твердом теле, для которого возможны как продольные, так и поперечные волны. Если же появление сдвига невозможно, то среда может быть любой.

Каждая волна распространяется с какой-то скоростью. Под скоростью волны понимают скорость распространения возмущения. Поскольку скорость волны - величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:

Длина́ волны́ - расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе. Длина волны соответствует пространственному периоду волны, то есть расстоянию, которое точка с постоянной фазой «проходит» за интервал времени, равный периоду колебаний, поэтому

Волновое число (также называемое пространственной частотой ) - это отношение 2π радиан к длине волны: пространственный аналог круговой частоты.

Определение : волновым числом k называется быстрота роста фазы волны φ по пространственной координате.

3.2. Плоская волна - волна, фронт которой имеет форму плоскости.

Фронт плоской волны неограничен по размерам, вектор фазовой скорости перпендикулярен фронту. Плоская волна является частным решением волнового уравнения и удобной моделью: такая волна в природе не существует, так как фронт плоской волны начинается в и заканчивается в , чего, очевидно, быть не может.

Уравнение любой волны является решением дифференциального уравнения, называемого волновым. Волновое уравнение для функции записывается в виде:

где

· - оператор Лапласа;

· - искомая функция;

· - радиус вектора искомой точки;

· - скорость волны;

· - время.

Волновая поверхность - геометрическое место точек, испытывающих возмущение обобщенной координаты в одинаковой фазе. Частный случай волновой поверхности - волновой фронт.

А) Плоская волна – это волна, волновые поверхности которой представляют собой совокупность параллельных друг другу плоскостей.

Б) Сферическая волна – это волна, волновые поверхности которой представляют собой совокупность концентрических сфер.

Луч - линия, нормальной и волновой поверхности. Под направлением распространения волн понимают направление лучей. Если среда распространения волны однородная и изотропная, лучи прямые (причём, если волна плоская - параллельные прямые).

Понятием луч в физике обычно пользуются только в геометрической оптике и акустике, так как при проявлении эффектов, не изучаемых в данных направлениях, смысл понятия луч теряется.

3.3. Энергетические характеристики волны

Среда, в которой распространяется волна, обладает механической энергией, складывающейся из энергий колебательного движения всех ее частиц. Энергия одной частицы с массой m 0 находится по формуле: Е 0 = m 0 Α 2 ω 2 /2. В единице объема среды содержится n = p /m 0 частиц - плотность среды). Поэтому единица объема среды обладает энергией w р = nЕ 0 = ρ Α 2 ω 2 /2.

Объемная плотность энергии (W р)- энергия колебательного движения частиц среды, содержащихся в единице ее объема:

Поток энергии (Ф) - величина, равная энергии, переносимой волной через данную поверхность за единицу времени:

Интенсивность волны или плотность потока энергии (I) - величина, равная потоку энергии, переносимой волной через единичную площадку, перпендикулярную направлению распространения волны:

3.4. Электромагнитная волна

Электромагнитная волна - процесс распространения электромагнитного поля в пространстве.

Условие возникновения электромагнитных волн. Изменения магнитного поля происходят при изменении силы тока в проводнике, а сила тока в проводнике изменяется при изменении скорости движения электрических зарядов в нем, т. е. при движении зарядов с ускорением. Следовательно, электромагнитные волны должны возникать при ускоренном движении электрических зарядов. При скорости заряда, равной нулю, существует только элект­рическое поле. При постоянной скорости заряда возникает электромаг­нитное поле. При ускоренном движении заряда происходит излучение электромагнитной волны, кото­рая распространяется в про­странстве с конечной скоро­стью.

Электромагнитные волны распространяются в веществе с конечной скоростью. Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε 0 и μ 0 – электрическая и магнитная постоянные: ε 0 = 8,85419·10 –12 Ф/м, μ 0 = 1,25664·10 –6 Гн/м.

Скорость электромагнитных волн в вакууме (ε = μ = 1):

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию. Длина волны зависит от скорости распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше.

Электромагнитное излучение принято делить по частотам диапазонам (см. таблицу). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.

Интерференция волн. Когерентные волны. Условия когерентности волн.

Оптическая длина пути (о.д.п.) света. Связь разности о.д.п. волн с разностью фаз колебаний, вызываемых волнами.

Амплитуда результирующего колебания при интерференции двух волн. Условия максимумов и минимумов амплитуды при интерференции двух волн.

Интерференционные полосы и интерференционная картина на плоском экране при освещении двух узких длинных параллельных щелей: а) красным светом, б) белым светом.

1) ИНТЕРФЕРЕНЦИЯ ВОЛН - такое наложение волн, при котором происходит устойчивое во времени их взаимное усиление в одних точках пространства и ослабление в других, в зависимости от соотношения между фазами этих волн.

Необходимые условия для наблюдения интерференции:

1) волны должны иметь одинаковые (или близкие) частоты, чтобы картина, получающаяся в результате наложения волн, не менялась во времени (или менялась не очень быстро, что бы её можно было успеть зарегистрировать);

2) волны должны быть однонаправленными (или иметь близкое направление); две перпендикулярные волны никогда не дадут интерференции (попробуйте сложить две перпендикулярные синусоиды!). Иными словами, складываемые волны должны иметь одинаковые волновые векторы (или близконаправленные).

Волны, для которых выполняются эти два условия, называются КОГЕРЕНТНЫМИ . Первое условие иногда называют временной когерентностью , второе - пространственной когерентностью .

Рассмотрим в качестве примера результат сложения двух одинаковых однонаправленных синусоид. Варьировать будем только их относительный сдвиг. Иными словами, мы складываем две когерентные волны, которые отличаются только начальными фазами (либо их источники сдвинуты друг относительно друга, либо то и другое вместе).

Если синусоиды расположены так, что их максимумы (и минимумы) совпадают в пространстве, произойдет их взаимное усиление.

Если же синусоиды сдвинуты друг относительно друга на полпериода, максимумы одной придутся на минимумы другой; синусоиды уничтожат друг друга, то есть произойдет их взаимное ослабление.

Математически это выглядит так. Складываем две волны:

здесь х 1 и х 2 - расстояния от источников волн до точки пространства, в которой мы наблюдаем результат наложения. Квадрат амплитуды результирующей волны (пропорциональный интенсивности волны) дается выражением:

Максимум этого выражения есть 4A 2 , минимум - 0; всё зависит от разности начальных фаз и от так называемой разности хода волн :

При в данной точке пространства будет наблюдаться интерференционный максимум, при - интерференционный минимум.

В нашем простом примере источники волн и точка пространства, где мы наблюдаем интерференцию, находятся на одной прямой; вдоль этой прямой интерференционная картина для всех точек одинакова. Если же мы сдвинем точку наблюдения в сторону от прямой, соединяющей источники, мы попадем в область пространства, где интерференционная картина меняется от точки к точке. В этом случае мы будем наблюдать интерференцию волн с равными частотами и близкими волновыми векторами.

2)1. Оптической длиной пути называется произведение геометрической длины d пути световой волны в данной среде на абсолютный показатель преломления этой среды n.

2. Разность фаз двух когерентных волн от одного источника, одна из которых проходит длину пути в среде с абсолютным показателем преломления , а другая – длину пути в среде с абсолютным показателем преломления :

где , , λ – длина волны света в вакууме.

3)Амплитуда результирующего колебания зависит от величины, называемой разностью хода волн.

Если разность хода равна целому числу волн, то волны приходят в точку синфазно. Складываясь, волны усиливают друг друга и дают колебание с удвоенной амплитудой.

Если разность хода равна нечетному числу полуволн, то волны приходят в точку А в противофазе. В этом случае они гасят друг друга, амплитуда результирующего колебания равна нулю.

В других точках пространства наблюдается частичное усиление или ослабление результирующей волны.

4)Опыт Юнга

В 1802 г. английский ученый Томас Юнг поставил опыт, в котором наблюдал интерференцию света. Свет из узкой щели S , падал на экран с двумя близко расположенными щелями S 1 и S 2 . Проходя через каждую из щелей, световой пучок расширялся, и на белом экране световые пучки, прошедшие через щели S 1 и S 2 , перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.

Осуществление интерференции света от обычных источников света.

Интерференция света на тонкой пленке. Условия максимумов и минимумов интерференции света на пленке в отраженном и в проходящем свете.

Интерференционные полосы равной толщины и интерференционные полосы равного наклона.

1)Явление интерференции наблюдается в тонком слое несмешивающихся жидкостей (керосина или масла на поверхности воды), в мыльных пузырях, бензине, на крыльях бабочек, в цветах побежалости, и т. д.

2) интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз у просветлённыхобъективов. Луч света, проходя через плёнку толщиной , отразится дважды - от внутренней и наружной её поверхностей. Отражённые лучи будут иметь постоянную разность фаз, равную удвоенной толщине плёнки, отчего лучи становятся когерентными и будут интерферировать. Полное гашение лучей произойдет при , где - длина волны. Если нм, то толщина плёнки равняется 550:4=137,5 нм.

«Физика - 11 класс»

Электромагнитная индукция

Английский физик Майкл Фарадей был уверен в единой природе электрических и магнитных явлений.
Изменяющееся во времени магнитное поле порождает электрическое поле, а изменяющееся электрическое поле - магнитное.
В 1831 году Фарадей открыл явление электромагнитной индукции, легшее в основу устройства генераторов, превращающих механическую энергию в энергию электрического тока.


Явление электромагнитной индукции

Явление электромагнитной индукции - это возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется.

Для своих многочисленных опытов Фарадей использовал две катушки, магнит, выключатель, источник постоянного тока и гальванометр.

Электрический ток способен намагнитить кусок железа. Не может ли магнит вызвать появление электрического тока?

В результате опытов Фарадей установил главные особенности явления электромагнитной индукции:

1). индукционный ток возникает в одной из катушек в момент замыкания или размыкания электрической цепи другой катушки, неподвижной относительно первой.

2) индукционный ток возникает при изменении силы тока в одной из катушек с помощью реостата 3). индукционный ток возникает при движении катушек относительно друг друга 4). индукционный ток возникает при движении постоянного магнита относительно катушки

Вывод:

В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром.
И чем быстрее меняется число линий магнитной индукции, тем больше возникающий индукционный ток.

При этом не важно. что является причиной изменения числа линий магнитной индукции.
Это может быть и изменение числа линий магнитной индукции, пронизывающих поверхность, ограниченную неподвижным проводящим контуром, вследствие изменения силы тока в соседней катушке,

и изменение числа линий индукции вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве, и т.д.

Магнитный поток

Магнитный поток - это характеристика магнитного поля, которая зависит от вектора магнитной индукции во всех точках поверхности, ограниченной плоским замкнутым контуром.

Есть плоский замкнутый проводник (контур), ограничивающий поверхность площадью S и помещенный в однородное магнитное поле.
Нормаль (вектор, модуль которого равен единице) к плоскости проводника составляет угол α с направлением вектора магнитной индукции

Магнитным потоком Ф (потоком вектора магнитной индукции) через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь S и косинус угла α между векторами и :

Ф = BScos α

где
Вcos α = В n - проекция вектора магнитной индукции на нормаль к плоскости контура.
Поэтому

Ф = B n S

Магнитный поток тем больше, чем больше В n и S .

Магнитный поток зависит от ориентации поверхности, которую пронизывает магнитное поле.

Магнитный поток графически можно истолковать как величину, пропорциональную числу линий магнитной индукции, пронизывающих поверхность площадью S .

Единицей магнитного потока является вебер .
Магнитный поток в 1 вебер (1 Вб ) создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции.